论文液压系统工作原理如何降重

论文液压系统工作原理如何降重

1.液压系统的工作原理

  • 液压传动的工作原理。

    液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。液力传动系统主要是利用液体动能进行能量转换的传动方式,如液力耦合器和液力变矩器。液压传动是利用液体压力能进行能量转换的传动方式。在机械上采用液压传动技术,可以简化机器的结构,减轻机器质量,减少材料消耗,降低制造成本,减轻劳动强度,提高工作效率和工作的可靠性。液压传动系统在交通工具、建筑机械及其他机械上,特别是汽车上(如自动变速器、液力转向装置、刹车系统等)获得了广泛的应用,已成为汽车不可缺少的一部分。

    液压传动系统在实际运行过程中,主要依靠液压泵的作用来运转。借助原动机的功能,使机械能向液体压力能的方向转变,并对能量进行高效传递。在系统内部管道、控制阀门的传递作用下,利用马达、液压缸等元器件,完成液体压力能向机械能的转变,带动系统的回转或往复性直线运作。在执行系统控制工作、对能量进行传递时,需要液压传动系统中液体介质来发挥作用,而系统特有的传动途径可确保其具有很强的功能性。

    液压传动的工作原理,可以用一个液压千斤顶的工作原理来说明:

    1—杠杆手柄

    2—小油缸

    3—小活塞

    4,7—单向阀

    5—吸油管

    6,10—管道

    8—大活塞

    9—大油缸

    11—截止阀

    12—油箱

    图是液压千斤顶的工作原理图。大油缸9和大活塞8组成举升液压缸。杠杆手柄1、小油缸2、小活塞3、单向阀4和7组成手动液压泵。如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成局部真空,这时单向阀4打开,通过吸油管5从油箱12中吸油;用力压下手柄,小活塞下移,小活塞下腔压力高,单向阀4关闭,单向阀7打开,下腔的油液经管道6输入举升油缸9的下腔,迫使大活塞8向上移动,顶起重物。再次提起手柄吸油时,单向阀7自动关闭,使油液不能倒流,从而保证了重物不会自行下落。不断地往复扳动手柄,就能不断地把油液压入举升缸下腔,使重物逐渐地升起。如果打开截止阀11,举升缸下腔的油液通过管道10、截止阀11流回油箱,重物就向下移动。这就是液压千斤顶的工作原理。

    液压传动是利用有压力的油液作为传递动力的工作介质,而且传动中必须经过两次能量转换 。

  • 液压传动中由液压泵、液压控制阀、液压执行元件(液压缸和液压马达等)和液压辅件(管道和蓄能器等)组成的液压系统。液压泵把机械能转换成液体的压力能,液压控制阀和液压辅件控制液压介质的压力、流量和流动方向,将液压泵输出的压力能传给执行元件,执行元件将液体压力能转换为机械能,以完成要求的动作。

    一、标准液压传动系统构成

    1)动力元件,即液压泵,其职能是将原动机的机械能转换为液体的压力动能(表现为压力、流量),其作用是为液压系统提供压力油,是系统的动力源。

    2)执行元件,指液压缸或液压马达,其职能是将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可完成回转运动。

    3)控制元件,指各种阀利用这些元件可以控制和调节液压系统中液体的压力、流量和方向等,以保证执行元件能按照人们预期的要求进行工作。

    4)辅助元件,包括油箱、滤油器、管路及接头、冷却器、压力表等。它们的作用是提供必要的条件使系统正常工作并便于监测控制。

    5)工作介质,即传动液体,通常称液压油。液压系统就是通过工作介质实现运动和动力传递的,另外液压油还可以对液压元件中相互运动的零件起润滑作用。

    二、液压传动系统工作原理

    图为简单磨床的液压传动系统的组成和工作原理。电动机带动液压泵从油箱吸油,液压泵把电动机的机械能转换为液体的压力能。液压介质通过管道经节流阀和换向和阀进入液压缸左腔,推动活塞带动工作台右移,液压缸右腔排出的液压介质经换向阀流回油箱。换向阀换向之后液压介质进入液压缸右腔,使活塞左移,推动工作台反向移动。改变节流阀的开口可调节液压缸的运动速度。液压系统的压力可通过溢流阀调节。在绘制液压系统图时,为了简化起见都采用规定的符号代表液压元件,这种符号称为职能符号。

    三、液压基本控制回路及原理

    1、液压主回路

    基本回路 由有关液压元件组成,用来完成特定功能的典型油路。任何一个液压传动系统都是由几个基本回路组成的,每一基本回路都具有一定的控制功能。几个基本回路组合在一起,可按一定要求对执行元件的运动方向、工作压力和运动速度进行控制。根据控制功能不同,基本回路分为压力控制回路、速度控制回路和方向控制回路。

    2、速度控制回路

    速度控制回路 通过控制介质的流量来控制执行元件运动速度的回路。按功能不同分为调速回路和同步回路。

    (1)同步回路:控制两个或两个以上执行元件同步运行的回路,例如采用把两个执行元件刚性连接的方法,以保证同步;用节流阀或调速阀分别调节两个执行元件的流量使之相等,以保证同步;把液压缸的管路串联,以保证进入两液压缸的流量相同,从而使两液压缸同步。

    (2)调速回路:用来控制单个执行元件的运动速度,可以用节流阀或调速阀来控制流量,如图 简单磨床的液压传动系统原理图 中的节流阀就起这一作用。节流阀控制液压泵进入液压缸的流量(多余流量通过溢流阀流回油箱),从而控制液压缸的运动速度,这种形式称为节流调速。也可用改变液压泵输出流量来调速,称为容积调速。

    3、方向控制回路

    方向控制回路 控制液压介质流动方向的回路。用方向控制阀控制单个执行元件的运动方向,使之能正反方向运动或停止的回路,称为换向回路,图 简单磨床的液压传动系统原理图 中的换向阀即起这一作用。在执行元件停止时,防止因载荷等外因引起泄漏导致执行元件移动的回路,称为锁紧回路。

    4、压力控制回路

    压力控制回路 用压力控制阀(见液压控制阀)来控制整个系统或局部范围压力的回路。根据功能不同,压力控制回路又可分为调压、变压、卸压和稳压 4种回路。

    (1)卸压回路:在系统不要压力或只要低压时,通过卸压回路使系统压力降为零压或低压。

    (2)稳压回路:用以减小或吸收系统中局部范围内产生的压力波动,保持系统压力稳定,例如在回路中采用蓄能器。

    (3)调压回路:这种回路用溢流阀来调定液压源的最高恒定压力,溢流阀就起这一作用。当压力大於溢流阀的设定压力时,溢流阀开口就加大,以降低液压泵的输出压力,维持系统压力基本恒定。

    (4)变压回路:用以改变系统局部范围的压力,如在回路上接一个减压阀则可使减压阀以后的压力降低;接一个升压器,则可使升压器以后的压力高於液压源压力。

2.液压系统的工作原理是怎样的?

简单的说一下就行,好像是从液压电机开始加压的吧,那么液压电机是怎么加压的呢?

  • 液压系统的工作原理:

    压站又称液压泵站,是系统的液压装置,它按驱动装置(主机)要求供油,并控制油流的方向、压力和流量,它适用于主机与液压装置可分离的各种液压机械下。用户购买后只要将液压站与主机上的执行机构(油缸和油马达)用油管相连,液压机械即可实现各种规定的动作、工作循环。液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功用如下:泵装置——上装有电机和油泵,它是液压站的动力源,将机械能转化为液压油的动力能。集成块——是由液压阀及通道体组合而成。它对液压油实行方向、压力、流量调节。 阀组合——是板式阀装在立板上,板后管连接,与集成块功能相同。油 箱——是钢板焊的半封闭容器,上还装有滤油网、空气滤清器等,它用来储油、油的冷却及过滤。 电器盒——分两种形式。一种设置外接引线的端子板;一种是配置了全套控制电器。 液压站的工作原理如下:电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后经外接管路传输到液压机械的油缸或油马达中,从而控制了液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。

    发动机的机械功通过主泵转变为液压能,

    主泵将液压能通过控制阀传送给各个工作元件。

  • 理解1:你说的“液压电机”英文是不是“hydraulic motor"?如果是的话,这个词组应该翻译成“液压马达”,液压马达工作是一个油口高压进油,一个油口低压回油,进而驱动马达旋转。

    理解2:“液压电机”如何加压?理解为如何通过电机产生液压动力:电机驱动液压油泵,油泵吸油,使液压油升压(压力取决于负载),并输出流量,给液压系统提供压力和流量。

3.怎样分析液压系统的工作原理

  • 这个命题比较大哦,说的具体一点,有以下几种情况。

    1、您想做一台液压系统

    1)现成一台设备在,想做一台与现成设备工作原理、功能一样的液压站。

    最简单的办法,把目前的液压站的配置清单理出来,把液压元件的型号抄下来;

    另外液压的执行动作描述清楚,比如控制几只油缸,油缸是否同时动作,是否保压,是否需要中位停止,运动速度如何等等。

    2)想设计一台全新的液压系统

    您需要把液压的执行动作按步骤先理清楚,第一步,第二步等。按照您想做设备,属于精加工、粗加工,确定系统压力,分析受力情况,对油缸选型。

    2、您手上有一张液压系统原理图,想去分析,然后做液压系统配置

    1)您先要学习液压原理图中的符号各自代表什么意思;

    2)学习液压系统的组成,结合原理图的符号,对液压系统各个配件做选型。

    一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。

  • 分析液压系统的工作原理:

    1、将系统按动作分割,从执行元件开始用红笔把供油油路涂红,用蓝笔把回油油路涂蓝,如此回推至控制元件,再至动力元件和油箱,如此则一条干路清晰。

    2、分析与之并联的压力控制阀以及与之串联的流量控制阀的功能和作用。

    3、分析与之该支路相连的虚线也就是控制回路的走向,弄清其作用。

    这样该系统的此部分自然清晰。同理分析其他动作,之后整套系统自然了然于胸。

4.液压系统工作原理?

  • 液压系统工作原理简单地说就是:帕斯卡原理,即加在密闭液体上的压强,能够大小不变地由液体向各个方向传递。

  • 原发布者:强强双子子

    第5章液压阀5.1方向控制阀5.2压力控制阀5.3流量控制阀5.1方向控制阀方向控制阀:控制液压系统中油液流动的方向或液流的通与断单向阀换向阀单向阀双向液压锁二、换向阀工作原理:利用阀芯和阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向分类:按操作方式分:手动换向阀、机动换向阀(亦称行程阀)、电磁换向阀、液动换向阀和电液换向阀等按阀芯工作时在阀体中所处的位置和换向阀所控制的通路数不同分:二位二通换向阀、二位三通换向阀、二位四通换向阀、三位四通换向阀等按阀的安装方式分:管式(亦称螺纹式)换向阀、板式换向阀和法兰式换向阀等按阀的结构形式分:滑阀式换向阀、转阀式换向阀和锥阀式换向阀等换向阀的图形符号方格数即“位”数,三格即三位箭头表示两油路连通,但不表示流向。“⊥”表示油路不通。在一个方格内,箭头或“⊥”符号与方格的交点数为油路的通路数,即“通”数每个换向阀都有一个常态位(即阀芯在未受到外力作用时的位置)。在液压系统图中,换向阀的符号与油路的连接一般应画在常态位上换向阀=操纵方式+位和通路三位换向阀的中位机能中位机能:三位阀常态位(即中位)各油口的连通方式。不同的中位机能是通过改变阀芯的形式和尺寸得到的系统保压系统卸荷换向平稳性与精度启动平稳性液压缸“浮

5.液压系统的工作原理:

  • 液压传动原理:以油液作为工作介质,通过油液内部的压力来传递动力。

    1、动力部分-将原动机的机械能转换为油液的压力能(势能)。例如:各种液压泵。

    2、执行部分-将液压泵输入的油液压力能转换为带动工作机构的机械能。例如:各种

    液压缸、液压马达。

    3、控制部分-用来控制和调节油液的压力、流量和流动方向。例如:各种压力控制阀、

    流量控制阀。

    4、辅助部分-将前面三部分连接在一起,组成一个系统,起贮油、过滤、测量和密封

    等作用。例如:软硬管路、接头、油箱、滤油器、蓄能器、密封件和显示仪表等。

  • 主柱塞和副柱塞都是单向结构。在液压油的作用下,柱塞动力伸出,柱塞返回时靠自身重量缩回;三级活塞是双向结构。在液压油的作用下,三级活塞伸缩。举升油缸有三个油口

    1、P2和P3。缸盖上设有油口P1,与柱塞工作腔和三级活塞无杆腔相通,油路中设有单向节流阀;油口P2位于第三级活塞杆处,与第三级活塞的杆腔相连,油道上设有孔口。油口P3位于第三级活塞杆处,与柱塞工作腔和第三级活塞无杆腔连通,并与P1油路连通,油路中设有孔口。油缸第三级活塞的气缸盖上设有通气孔,通气孔上安装有排气塞。扩展数据液压系统包括共用一个液压油箱的主液压系统和转向液压系统。

    1.主液压系统主液压系统在设备调整和钻修作业中为钻机车提供液压动力,并配有各种阀件,以控制各种液压机具的正确和安全运行。

    2.转向液压系统转向液压系统为车辆前轴的液压动力转向提供液压动力。它配有各种阀门部件,控制液压系统的压力和流向,稳定最大流量,确保车辆转向轻便、灵活、安全可靠。参考来源:百度百科-液压系统

  • 它是由两个大小不同的液缸组成的,在液缸里充满水或油。充水的叫“水压机”;充油的称“油压机”。两个液缸里各有一个可以滑动的活塞,如果在小活塞上加一定值的压力,根据帕斯卡定律,小活塞将这一压力通过液体的压强传递给大活塞,将大活塞顶上去。

    设小活塞的横截面积是S1,加在小活塞上的向下的压力是F1。于是,小活塞对液体的压强为P=F1/SI,能够大小不变地被液体向各个方向传递”。大活塞所受到的压强必然也等于P。若大活塞的横截面积是S2,压强P在大活塞上所产生的向上的压力F2=PxS2,截面积是小活塞横截面积的倍数。

    从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大的力,为此用液压机来压制胶合板、榨油、提取重物、锻压钢材等。

  • 液压系统的工作原理:

    压站又称液压泵站,是系统的液压装置,它按驱动装置(主机)要求供油,并控制油流的方向、压力和流量,它适用于主机与液压装置可分离的各种液压机械下。用户购买后只要将液压站与主机上的执行机构(油缸和油马达)用油管相连,液压机械即可实现各种规定的动作、工作循环。液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功用如下:泵装置——上装有电机和油泵,它是液压站的动力源,将机械能转化为液压油的动力能。集成块——是由液压阀及通道体组合而成。它对液压油实行方向、压力、流量调节。 阀组合——是板式阀装在立板上,板后管连接,与集成块功能相同。油 箱——是钢板焊的半封闭容器,上还装有滤油网、空气滤清器等,它用来储油、油的冷却及过滤。 电器盒——分两种形式。一种设置外接引线的端子板;一种是配置了全套控制电器。 液压站的工作原理如下:电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后经外接管路传输到液压机械的油缸或油马达中,从而控制了液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。

    发动机的机械功通过主泵转变为液压能,

    主泵将液压能通过控制阀传送给各个工作元件。

  • 液压传动又称为容积式液压传动,是用液体作为介质,利用液体的压力能和动能来传递能量和进行控制的传动装置.通常把剩用液体压力能的液压系统使用的液体介质称为液压油. 液压传动元件体积小,重量轻,结构紧凑,容易进行无级调速和容易实现标准化,系统化,通用化.所以广泛应用于冶金机械,工程机械,矿山机械,农业机械,汽车,船舶,飞机等.液压系统虽然多种多样,但从能量转换的角度来看,它们的工作原理和组成基本相同。 典型的液压系统包括液压泵,液压油的油箱,定向控制阀,流量控制阀,工作汽缸,柱塞阀和减压阀.液压系统中常用的三种典型液压泵为齿轮泵,叶片泵和轴向往返泵.动力元件油泵是液体系统的心脏.液压泵的操纵元件(包括流量阀,溢流阀,方向阀,比例阀等)用来控制和调节液流的压力.流量及方向,以满足设备工作性能的要求,并实现各种不同的工作循环,执行元件把液体的压力能转变为机械能,从而带动机构运动。

论文液压系统工作原理如何降重
下载Doc文档

猜你喜欢